Quantum operation, quantum Fourier transform and semi-definite programming
نویسندگان
چکیده
منابع مشابه
Quantum operation, quantum Fourier transform and semi-definite programming
We analyze a class of quantum operations based on a geometrical representation of d−level quantum system (or qudit for short). A sufficient and necessary condition of complete positivity, expressed in terms of the quantum Fourier transform, is found for this class of operations. A more general class of operations on qudits is also considered and its completely positive condition is reduced to t...
متن کاملFourier-transform quantum state tomography
We propose a technique for performing quantum state tomography of photonic polarization-encoded multiqubit states. Our method uses a single rotating wave plate, a polarizing beam splitter, and two photon-counting detectors per photon mode. As the wave plate rotates, the photon counters measure a pseudocontinuous signal which is then Fourier transformed. The density matrix of the state is recons...
متن کاملA quantum Fourier transform algorithm
Algorithms to compute the quantum Fourier transform over a cyclic group are fundamental to many quantum algorithms. This paper describes such an algorithm and gives a proof of its correctness, tightening some claimed performance bounds given earlier. Exact bounds are given for the number of qubits needed to achieve a desired tolerance, allowing simulation of the algorithm.
متن کاملA relation between quantum operations and the quantum Fourier transform
We propose a general geometry representation of d-level quantum system (or qudit for short). Then we define a general class of operations for qudits. A sufficient and necessary condition of when an operation in the class would be a legal quantum operation is found. This condition is expressed in terms of the quantum Fourier transform. As an application of this condition, we recover the optimal ...
متن کاملQuantum Algorithms and the Fourier Transform
The quantum algorithms of Deutsch, Simon and Shor are described in a way which highlights their dependence on the Fourier transform. The general construction of the Fourier transform on an Abelian group is outlined and this provides a unified way of understanding the efficacy of the algorithms. Finally we describe an efficient quantum factoring algorithm based on a general formalism of Kitaev a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2004
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2004.01.045